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SLOW MOTIONS OF A SOLID IN A CONTINUOUSLY STRATIFIED FLUID 

V. A. Vladimirov and K. I. Ii'in UDC 532.5 

The problem of the motion of a solid in a fluid of nonuniform density (stratified) is 
a particularly difficult and intensively investigated one [i]. The almost total absence of 
exact solutions has led to a great deal of work on the development of linear-approximation 
models [2-5]. 

Again in the linear approximation we have constructed particular solutions of the flow 
problem for the slow motions of a three-dimensional or two-dimensional solid in an ideal 
incompressible stratified fluid. The shape of the body and its direction of motion may be 
arbitrary, and the dependence of the velocity on time t has a special form [proportional to 
exp (st) with constant ~ > 0]. A new method of constructing the solution is proposed. It is 
based on the following remarkable fact: by direct transformation the problem can be reduced 
to the classical problem of the potential flow of a homogeneous fluid past some other fic- 
titious body. This equivalence makes it possible to calculate the velocity and resistance 
fields in the stratified fluid. And the formulas for the resistance are simple analytic 
expressions. 

The limiting solutions as ~ + 0, which are of interest from two points of view, have 
been studied in detail. First, they correspond to the important practical case of uniform 
motion, and, second, they coincide with the solutions of the problem of the instantaneous 
setting in motion of a body initially at rest. At the same time, the problem of impulsive 
motion, previously considered in various particular formulations [3, 5], has been solved in 
general form. The calculations showed that the limiting (~ + 0) flows have a characteristic 
layered structure. The vertical velocity component is equal to zero, and the fluid moves 
in horizontal layers (z = const). In all cases the resistance to the uniform motion of a 
three-dimensional body (less the buoyancy force) is equal to zero, which gives a result 
analogous to the D'Alembert paradox. For a two-dimensional body a fundamentally different 
answer is obtained: in the limit as ~ + 0 the resistance is finite for both horizontal and 

vertical motion. 

Thus, a number of general results relating to low Froude number regimes have been ob- 
tained for stratified flow past a body. The analogous problem of the motion of a body in a 
rotating fluid was solved in [6]. In the light of the analogy between stratification and ro- 
tation [7, 8] our results are a development of the approach adopted in [6]. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
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i. Formulation of the Problem. We will consider a three-dimensional solid moving in 
an unbounded ideal incompressible fluid of nonuniform density. The equations of motion of 
the fluid are taken in the Boussinesq approximation [9]: 

Du = - - V P - ~ p g ,  Dp - - 0 ,  d i v u  = 0 ,  D - ~ 0 t - ~ u ' V  ( 1 . 1 )  

(u , p, and p a r e  t h e  v e l o c i t y ,  d e n s i t y ,  and p r e s s u r e  f i e l d s ,  g i s  t h e  u n i f o r m  g r a v i t y  f i e l d ) .  
I n  t h e  C a r t e s i a n  c o o r d i n a t e  s y s t e m  x,  y ,  z we t a k e  u = (u ,  v ,  w),  g = (0 ,  0, - g ) ,  g > 0. At 
r ~ /x 2 + y2 + z 2 § ~ the fluid is at rest and in a state of stable hydrostatic equilibrium 

with density profile p0(z): 

u - + 0 ,  p - + p 0 ( z )  as  r - + m .  ( 1 . 2 )  

On the boundary of the body the no-flow conditions 

( u - -  u , ) V f  = 0, ( 1 . 3 )  

are satisfied, where u.(t) is the velocity of the body; in the coordinate system moving with 
the body the boundary 3x is given by the equation 

?(x, g, z) -- 0. (1.4) 

We will study the exponential regimes 

u,( t )  = eu0exp(at ), a > 0  ( 1 . 5 )  

(u0 = (u0, v0,~), [%1 = I, ~ and ~ are constants). Moreover, it is zssumed that as t § -~ the 
fluid (like the body) is at rest: 

u~, t)-,- o, t--+ - ~ .  ( 1 . 6 )  

It is required to determine the motion of the fluid and the force acting on the body when 
the velocity of the body [u,l is small. 

In the coordinate system moving with the body equations (I.I) take the form: 

Du = ~ V p - - a u ,  + pg, Dp = 0, d ivu = 0, ( 1 . 7 )  

and t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 2 ) ,  ( 1 . 3 )  g i v e  

uvf  = O whenf = O ,  ( 1 . 8 )  
u --+ - -  u ,  (t), p --.,- Po (z + h (t)), r ---* ~ ,  h (t) ~ -  w ,  ( t ) /~ .  

2. Slow Motion. The next basic assumption is that the motion of the body (1.5) is so 
slow that the equations of motion (1.7) can be taken in linearized form. This approximation 
corresponds to low Froude numbers (Fr ~ i) and high Reynolds numbers (Re ~ I). Since these 
two conditions are not inconsistent, the regimes in question may exist in reality. 

The linearization of Eqs. (1.7) gives 

~t  = - -  p ~ - - a u , ,  v t - -  - -  p y - - a v . ,  ( 2 . 1 )  
w t  = - -  p ~ - - p g - - a w , ,  Pt + p0(w + w,) = 0, u~ + vy § ~vz = 0, 

where u, v, and w are the velocity components in the coordinate system moving with the body, 
u.~ (u,, v,, ~v,) , the pressure and density perturbation fields are determined as corrections 
to the basic state p0(z + h(t)), p0(z + h(t)), and a prime denotes the derivative with respect 
to the variable z. Of course, there always exist values of t so large that for the law of 
motion (1.5) linearization will be incorrect. Therefore the results obtained will have 
physical significance only for times less than some value t o . 

The stratification is assumed to be linear p~ = const. In this case the coefficients 
in Eqs. (2.1) will be constants, the time dependence remaining only on their right sides. 
The solution of the problem (1.6), (1.8), (2.1) will be found in the form: 

(u, p, p) - e(ul, apl, p~) exp ( a t )  ( 2 . 2 )  

w i t h  f u n c t i o n s  %, P l ,  and Pl t h a t  depend o n l y  on r ~ (x ,  y ,  z ) .  S u b s t i t u t i n g  ( 2 . 2 )  in  ( 2 . 1 )  
and eliminating p gives 

ul + uo == - - P l x ,  v l  ~ ~ ~ - - P l y ,  ( 2 . 3 )  
(t + N~/aD(w~ + w0) . . . .  p~ ,  u ~  + q~ + ~v~ = 0 

(N 2 ~ - g p ~ ) .  The b o u n d a r y  c o n d i t i o n s  f o r  ( 2 . 3 )  f o l l o w  from ( 1 . 8 ) :  

u l - +  - -u  0 as r - +  oo, ulv ] - 0when] := 0. ( 2 . 4 ]  

195 



After appropriate stretching of the variables in (2.3) we can see that the pressure 
plays the role of velocity potential u s -~ uo. Introducing the notation = _----]r q0------ --PI, 
• ~ , from (2.3) we obtain 

• + %y) + %~ ~ 0 (2.5) 

The boundary condition (2.5) takes the form: 

V(9-+O as r - + ~ ,  ( 2 . 6 )  
:M2(q)x/x -~ ~y/y) -I- q)z/z == M2uov/ when/ = 0. 

By means of the change of independent variables 

.... x/M, ~ = y/• ~ =-- (~, 0, Z) ( 2 . 7 )  

we reduce the problem (2.5), (2.6) to the following form: 

V~qDVJ -- UV~/when / = O, ( 2.8 ) 

v~ = (a/oL a/aq, a/az), u = (nuo, nvo, • 

It is a remarkable fact that (2.8) coincides with the problem of the motion of a solid 
in a homogeneous fluid with a potential flow regime. The function ~ plays the part of 
velocity potential, U represents the velocity of the body, and the part of the new boundary 
of the body (1.4) is played by the surface 3o, given by the equation 

/(• • z) = O. ( 2 . 9 )  

Thus ,  by s t r e t c h i n g  t h e  v a r i a b l e s  ( 2 . 7 )  we h av e  r e d u c e d  t h e  p rob lem of  t h e  m o t i o n  o f  a 
body in a stratified fluid to the fictitious motion of a body in a homogeenous fluid. 

3. Resistance. The solution of (2.8) is usually represented in the form [7]: 

(P = ~i(~)U~ ( 3 . 1 )  

(sun,nation is carried out over the recurring vector and tensor indices). From (2.2), (3.1), 
and ~ - -Pl we calculate the resistance 

Fi = -- .~ p dS~, F* ~ (F 1, Fz, Fa/• ) -- -- ek• ( 3 . 2  ) 
oz 

where Min is the apparent mass tensor in problem (2.8) which, as is known, is symmetric: 

Min -- M~i = - -  .~ ~ dSi.  ( 3 . 3  ) 
o~ 

In (3.3) the integration is carried out over the surface (2.9). In (3.2) the factors con- 
taining • are obtained on going over from integration with respect to 3T to integration with 
respect to 30. In the case of a triaxial ellipsoid with semiaxes a, b, c Eq. (2.9) can be 
written as 

•  2 + • q z~lc ~ -  ~ = O. 

The tensor Min is diagonal with components given, for example, in [i0]. From (3.2) there 
follows 

Ft : --g/c-l(t -]- ]r o, (3.4) 

Fe := - - ek - l ( i  + k~)NehNtM22vo, F~ -: - -ek-3(t  q- k")ZNehNtMz3wo �9 

It should be noted that although the calculation of the resistance has been reduced to 
the calculation of the fictitious apparent mass tensor (3.3), the work done by the force 
applied to the body (3.2), (3.4) goes towards increasing both the kinetic and the potential 
energy of the fluid. The presence of the tensor Min in expression (3.2) merely reflects 
the fact that for the chosen law of motion (1.5) both forms of energy are described by means 
of this tensor. The energy integral for Eqs. (2.1), written in the initial coordinate sys- 
tem (fluid at infinity at rest), has the form 

2 E = f  (u '~ + v 2 + w" + (N2/p'o~)p~')dxdydz. 

, 
From the law of motion (2.2) there follows ap = -p0w; therefore'2E := (u ~ + v~q -• 
Going over to the notation of problem (2.8), we obtain 

2E -- ~ e ~ t M ~  n U~ U~. ( 3 . 5 )  
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Thus, the kinetic and potential energies can be written in the form of a fict ious kinetic 

energy. 

All the foregoing can be applied to the case of the motion of a two-dimensional body. 
For the resistance (per unit length along the y axis) instead of (3.2) we find 

F~ = --eNke~NtMlnUn, Fa = - -sN V' l  + k~ehmM3nUn. (3 .6 )  

I f  t h e  body i s  an e l l i p t i c  c y l i n d e r  w i t h  semiaxes  a and c ,  t h e n  ( 3 . 6 )  t a k e s  t h e  fo rm:  

(F 1, F3) = --~eN ]/1 + k2ehNt(c2Uo, a~tVo). (3 .7 )  

4. Flow Structure for Uniform Motion. Motion at constant velocity, to which in (1.5) 
and the subsequent relations there corresponds the passage to the limit a § 0, k § 0, is of 
considerable interest. 

The velocity fields characteristic of this regime can be obtained by passing to the 
limit k § 0 in the solutions of problem (2.8). This is easy to do when the explicit form of 
the solution for finite k is known (as, for example, for an ellipsoid or an elliptic: cylin- 
der). In general, the passage to the limit k § 0 in the solutions of problem (2.8) can be 
made only for the vertical motions of a three-dimensional or two-dimensional body. This is 
possible due to the fact that for small k the deformed surface (2.9) for a three-dimen- 
sional body is a vertical "needle" with transverse dimension of the order of k, and for a 
plane body a vertical plate with thickness of the order of k. For small k this enables the 
problem (2.8) to be solved within the framework of the slender body approximation, which has 
been well worked out, and permits the passage to the limit k + 0 in the solution obtained. 

We will consider the motion of a three-dimensional body in the vertical direction. For 
simplicity, let the surface of the body possess axial symmetry and be described by the equa- 

tionr =/(z),  [ z l < a  ( r = = - ] / x ~ + f ) .  Moreover, let ~ = ~ - -  Wz, W .... • ~ = V~-~-~)  2- Then for 
the velocity potential @ we obtain the well-known [ii] problem of uniform flow past an axi- 
symmetric slender body ~ ==R-~(z) ([zl<a) with velocity at infinity U = (0, 0,--W). Using the 
slender body approximation [ii], for the radial o and axial w velocity components we obtain 
the expressions 

= - ~'--'2~ i / ( z ' ) / '  (z ' )  ~ [(z - z ' )  ~ + ~ !  -~/~ dz', 
- - a  

__ % ~ /' w = - -  w0 ~ o I (z')  (z')  (z - z ' )  [(z - z')~ + ~ ]  -~/~ dz'. 
- - a  

Reconverting to the initial variables and passing to the limit as k + 0 gives the required 
velocity field 

w = - w0, ~ = - ~'~ (z) I (z) ~ - ~ ,  I z I < ~, 
O, 1~1>~.  

In  t h e  r e f e r e n c e  s y s t e m  moving w i t h  t h e  f l u i d  a t  r e s t  a t  i n f i n i t y  t h e  v e r t i c a l  v e l o c i t y  com- 
p o n e n t  i s  e q u a l  t o  z e r o .  The f l u i d  moves in  such  a way t h a t  i t  " s e p a r a t e s "  in  f r o n t  of  t h e  
body,  f l o w i n g  in  h o r i z o n t a l  p l a n e s ,  and " c l o s e s  up" b e h i n d  i t .  

A s i m i l a r  f l ow s t r u c t u r e  i s  a l s o  o b s e r v e d  in  t h e  p l a n e  p r o b l e m .  Here  t o o  i t  i s  p o s s i b l e  
t o  employ t h e  s l e n d e r  body a p p r o x i m a t i o n .  For  t h e  v e r t i c a l  m o t i o n  of  a s y m m e t r i c a l  body x = 
• < a) we obtain the velocity field 

l -  ~ s i g ~  (x) / ( :) ,  I ~ t < a,  
w = - ~Vo, u = i o ,  I z I > a. 

it is easy to see that in the plane case the limiting solutions do not decay at infinity. 
At the same time, in the solutions with finite a there are no perturbations at infinity. 
This means that in the limit as ~ § 0 the conditions (2.4), (2.6) break down. 

In general, when considering horizontal motion it is not possible to pass to the limit 
as k § 0. However, it is possible to make a passage to the limit in the equations of motion 
and then solve the limiting equations obtained. The fact that the solutions of the limiting 
equations coincide with the limits of the solutions of problem (2.8) can be demonstrated with 
reference to concrete examples (e.g:, for an ellipsoid or an elliptic cylinder). Let us 
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consider the three-dimensional problem. Setting k = 0 in (2.5), (2.6), we find 

% x - f - ~ y u  = O , v ~ - + O  as [ r l -+oo  , (4.1) 

The problem can be divided into a set of plane problems in horizontal planes (z = const). 
Considering that ~ +m0 = _~-2%, from (4.1) we may conclude that in the horizontal motion 
of a three-dimensional body the vertical velocity component is equal to zero, the fluid 
moves only in the planes z = const, and in each of these there is a plane potential flow 
regime. The same result was previously mentioned in [12]. 

In the case of the horizontal motion of a plane body it is convenient to make the pas- 
sage to the limit k + 0in problem (2.8). At this limit the deformed surface (2.9) is a ver- 
tical plate, i.e., (2.8) is the problem of the potential motion of a plate. Since its solu- 
tion is known, in order to obtain the required velocity field it is sufficient to make a 
reverse change of variables. In the reference system moving with the body this takes the 
form: 

o, I z t < a ,  
lzl w=O,u= - u 0 V ~ ,  Izl>a 

f o r  any body whose s u r f a c e  can be g i v e n  by t h e  e q u a t i o n  f ( x ,  z )  = O, Izl  < a .  I t  s h o u l d  be 
noted that this velocity field is determined 0nly by the vertical dimension of the body, and 
does not depend on its shape. It is also clear that in the limit as k + 0 the conditions 
at infinity break down, as in the vertical motion of a plane body. 

Thus, the limiting flows have a characteristic layered structure. In these flows the 
vertical velocity component is equal to zero and the motion takes place only in horizontal 
planes. 

5. Resistance to Uniform Motion. In order to calculate the limiting (k + 0) value of 
the resistance (3.2) it is necessary to know the behavior of the tensor Min near the point 
k = 0. For a triaxial ellipsoid from the expressions given in [I0] we can obtain Mll ~ k 2, 
M22 ~ k 2, M33 ~ k ~ in k, from which for the components of the force (3.4) there follows F l ~ 
k, F 2 ~ k, F 3 - klnk. Hence, in the limit as k § 0 the resistance to the motion of the 
ellipsoid in any direction is equal to zero. 

For the plane problem the result is fundamentally different: as k § 0 the resistance 
tends to a finite limit. Thus, for an elliptic cylinder the force (3.7) gives the limit 

(F~, F~) = --~N(C~Uo, a~Wo). ( 5 . 1 )  

The qualitative difference in the resistance to the uniform motion of three-dimensional 
and two-dimensional bodies becomes understandable when the energy relations are considered. 
The work done by the body ~E/~t = -Fnu,n(t). In accordance with (3.5), this expression can 
be rewritten in the form 2~E = -Fnu, n. From this it follows that the resistance is equal to 
zero if as ~ + 0 the energy E(~) increases more slowly than ~-i, as in the three-dimensional 
case. For the motion of a plane body E(~) ~ ~-i when ~ ~ i, which corresponds to finite 
values of the resistance. 

Thus, for the uniform motion of a three-dimensional body in an arbitrary direction there 
is no resistance, i.e., a result analogous to the D'Alembert paradox is obtained. For the 
uniform motion of a plane body the resistance is finite. 

6. Relation to the Problem of Impulsive Motion. The expression (5.1) for the horizontal 
component of the force F I coincides with the value obtained in [3] by passing to the limit as 
t + ~ in the problem of the instantaneous setting in motion of a body initially at rest. 
This coinciding of the limits is not a question of chance. We will show that it is always 
the case, both for the force and for the velocity field. 

The problem of impulsive motion can be formulated as follows. It is required to solve 
the equations 

ut = - - P x ,  vt = - - P v ,  wt = - - P z  --Pg, (6.1) 

Pl + P~ (w + %)  = O, u~ + v u + w~ = O 

with the boundary conditions 

" --~ --"0 as Ir[--~ oo~ uV/ -- 0 when / = 0. (6.2) 
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Since the body is instantaneously accelerated, at the initial instant (t = 0) the motion 
must be potential and must satisfy the boundary conditions (6.2), i.e., u(t = 0) =V~0. It is 
convenient to take the velocity potential % in the form % = --uor + ~. Applying to (6.1) a 
Laplace transformation with respect to time, we obtain 

su + u o ~ ~ , s v  + v o = - -~v ,  ( 6 . 3 )  

sW+Xo q @~, u~ + ~  + ~v~ = O. 

Here ,  / ( s ) =  ~exp ( - - s t ) / ( t ) d t ;  ~ = _ - - p  + %; q f ~  1 + Nf/sf; N i s  t h e  b u o y a n c y  f r e q u e n c y ;  a ba r  de-  
0 

n o t e s  t h e  t r a n s f o r m  of  t h e  c o r r e s p o n d i n g  f u n c t i o n .  The b o u n d a r y  c o n d i t i o n s  a r e  as  f o l l o w s :  

u v /  = 0 when f = O, and s u - + - - u 0  as I r l - + ~ .  I n  t e rms  o f  t h e  f u n c t i o n  r t h e  p rob l em t a k e s  t h e  
form: 

VO~ + ~)yy + q ~ = O, 
( 6 . 4 )  

r /x +-~y/g + q-2r -- "oV f when/ = O, V~-'---~0 as M - +  ~ "  

Solving the problem (6.4), we find the function ~. Then Eqs. (6.3) give u, v, w. 

In order to compare problems (2.5), (2.6), and (6.4) it is convenient to consider the 
case of real s. We pass to the limit as s + 0 by (6.3). By virtue of the well-known [13] 
property of the Laplace transformation 

lira s] (s) = lim / (t), [ arg s [ < a/2 -- 5 
s ~ O  t ~  

we obtain 

u o + l imu = l i m ~ ,  
. . . .  0 ( 6 . 5 )  

v 0 + l imv = lira ~y,  w 0 + l imw = lira q -2~v  
~ s ~ O  t ~  s ~ O  

The f u n c t i o n  ~ in  ( 6 . 5 )  i s  t h e  s o l u t i o n  of  p rob lem ( 6 . 4 ) ,  which  f o r m a l l y  c o i n c i d e s  w i t h  t h e  
p rob lem ( 2 . 5 ) ,  ( 2 . 6 )  p r e v i o u s l y  f o r m u l a t e d  in  s t u d y i n g  e x p o n e n t i a l  m o t i o n s .  When r e l a t i o n s  
( 2 . 3 )  and ( 6 . 5 )  a r e  t a k e n  i n t o  a c c o u n t ,  t h i s  means t h a t  t h e  v e l o c i t y  f i e l d  o b t a i n e d  in  t h e  
problem of impulsive motion in the limit as t § ~ coincides with the velocity field obtained 
in solving (2.5), (2.6) in the limit as ~ § O, which corresponds to uniform motion. 

The asymptotic expression for the resistance as t § ~ is similarly calculated: 

Fi = - -  lira [ pdS i  = ] i m s  [ ~ d S , .  ( 6. 6 ) 

I t  i s  e a s y  t o  see  t h a t  c o r r e c t  t o  t h e  n o t a t i o n  ( 6 . 6 )  c o i n c i d e s  w i t h  t h e  c o r r e s p o n d i n g  ex-  
p r e s s i o n  ( 3 . 2 )  t a k e n  in  t h e  l i m i t  as  a § O. I t  has  t h u s  been shown t h a t  t h e  l i m i t i n g  (~ § O) 
solutions considered coincide with the solutions of the problem of the impulsive motion of 
a body in a stratified fluid taken in the limit as t § ~. 

We conclude with the following remarks. 

i. The solutions constructed are characterized by the parameters e and k. If, follow- 
ing [6], we sum the various combinations of g and k, then we can solve the problem for the 
laws of motion u,(t) represented in the integral form: 

h 0 

u ,  (t) = u o ~ e (k) e• (kNt) dk, 0 < k o <-~ co, 
0 

where e(k) is an arbitrary function that ensures the convergence and smallness of the inte- 
gral. In this case the formulas for the resistance are obtained by integrating relations 
(3.2) with respect to k. 

2. The case of oscillatory motions u,(t) ~ ~u0cos(~t ) with frequency ~ greater than the 
buoyancy frequency N can be considered in exactly the same way as the case of exponential 
motions (1.5). 

3. The approach proposed is also applicable to the motion of a body in straight chan- 
nels, both horizontal and vertical. 
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EFFECT OF AN INFLECTION IN THE PROFILE OF MEAN VELOCITY ON THE 

RESONANCE INTERACTION OF PERTURBATIONS IN A BOUNDARY LAYER 

M. B. Zel'man and B. V. Smorodskii UDC 532.526 

The character of the laminar-turbulent transition (LTT) in shear flows depends to a 
considerable extent on the distribution of the vorticity of the average motion. According to 
the linear theory of stability, the appearance of extrema in such distributions (points of 
inflection in the velocity profile) leads to expansion of the spectrum and an increase in the 
increments of unstable pulsations that are already taking place (see [i, 2]). Both the time 
of formation of the nonlinear regime and the character of its occurrence are variable. 

The appearance of inflections may be due either to external flow conditions or to the 
nonlinear self-perturbation of "primary" waves in the flow. Examples of the effect of such 
mean flow singularities on the interaction of wave perturbations were examined in [3] for 
free shear layers and in [4] for pre-separation boundary layers. However, the laws governing 
the evolution of interacting waves under these conditions have yet to be definitively estab- 
lished. 

The goal of the present investigation is to explore features of the effect of the char- 
acteristics of inflected profiles on resonance wave interactions in boundary layers. The 
results that are obtained are used to interpret the mechanism responsible for preventing the 
occurrence of a subharmonic S-type transition with an increase in the level of the initial 
perturbations. 

We choose a flow with the profile UG(Y) [5] as the initial flow for studying the evolution 
of resonance perturbations. This flow models the motion of intensive eddies in a boundary 

layer: 

Ue (g) = U• + x(th (y - -  y~)/5 T l), y ~ g~- 
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